Description: Companies today are moving rapidly to integrate generative AI into their products and services. But there's a great deal of hype (and misunderstanding) about the impact and promise of this technology. With this book, Chris Fregly, Antje Barth, and Shelbee Eigenbrode from AWS help CTOs, ML practitioners, application developers, business analysts, data engineers, and data scientists find practical ways to use this exciting new technology. You'll learn the generative AI project life cycle including use case definition, model selection, model fine-tuning, retrieval-augmented generation, reinforcement learning from human feedback, and model quantization, optimization, and deployment. And you'll explore different types of models including large language models (LLMs) and multimodal models such as Stable Diffusion for generating images and Flamingo/IDEFICS for answering questions about images. Apply generative AI to your business use cases Determine which generative AI models are best suited to your task Perform prompt engineering and in-context learning Fine-tune generative AI models on your datasets with low-rank adaptation (LoRA) Align generative AI models to human values with reinforcement learning from human feedback (RLHF) Augment your model with retrieval-augmented generation (RAG) Explore libraries such as LangChain and ReAct to develop agents and actions Build generative AI applications with Amazon Bedrock
Price: 59.5 USD
Location: East Hanover, New Jersey
End Time: 2024-12-02T10:31:39.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 60 Days
Refund will be given as: Money Back
Return policy details:
EAN: 9781098159221
UPC: 9781098159221
ISBN: 9781098159221
MPN: N/A
Book Title: Generative AI on Aws: Building Context-Aware Multi
Number of Pages: 309 Pages
Publication Name: Generative Ai on Aws : Building Context-Aware Multimodal Reasoning Applications
Language: English
Publisher: O'reilly Media, Incorporated
Item Height: 0.7 in
Subject: Intelligence (Ai) & Semantics, General, Computer Vision & Pattern Recognition
Publication Year: 2023
Item Weight: 19 Oz
Type: Textbook
Author: Chris Fregly, Shelbee Eigenbrode, Antje Barth
Subject Area: Mathematics, Computers
Item Length: 9.1 in
Item Width: 7.2 in
Format: Trade Paperback